A CMOS MEMS Humidity Sensor Enhanced by a Capacitive Coupling Structure

نویسندگان

  • Jian-Qiu Huang
  • Baoye Li
  • Wenhao Chen
چکیده

A capacitive coupling structure is developed to improve the performances of a capacitive complementary metal oxide semiconductor (CMOS) microelectromechanical system (MEMS) humidity sensor. The humidity sensor was fabricated by a post-CMOS process. Silver nanowires were dispersed onto the top of a conventional interdigitated capacitive structure to form a coupling electrode. Unlike a conventional structure, a thinner sensitive layer was employed to increase the coupling capacitance which dominated the sensitive capacitance of the humidity sensor. Not only static properties but also dynamic properties were found to be better with the aid of coupling capacitance. At 25 ̋C, the sensitive capacitance was 11.3 pF, the sensitivity of the sensor was measured to be 32.8 fF/%RH and the hysteresis was measured to be 1.0 %RH. Both a low temperature coefficient and a fast response (10 s)/recovery time (17 s) were obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation and Modeling of a High Sensitivity Micro-electro-mechanical Systems Capacitive Pressure Sensor with Small Size and Clamped Square Diaphragm

This paper proposes a Micro-electro-mechanical (MEMS) capacitive pressure sensor that relies on the movable electrode displaced like a flat plate equal to the maximum center deflection of diaphragm. The diaphragm, movable electrode and mechanical coupling are made of polysilicon, gold and Si3N4, respectively. The fixed electrode is gold and the substrate is Pyrex glass. This proposed method inc...

متن کامل

Design of Novel High Sensitive MEMS Capacitive Fingerprint Sensor

In this paper a new design of MEMS capacitive fingerprint sensors is presented. The capacitive sensor is made of two parallel plates with air gap. In these sensors, the capacitance changes is very important factor. It is caused by deformation of the upper electrode of sensor. In this study with making slots in upper electrode, using T-shaped protrusion on diaphragm in order to concentrate the f...

متن کامل

Fabrication and Evaluation of a Graphene Oxide-Based Capacitive Humidity Sensor

In this study, a CMOS compatible capacitive humidity sensor structure was designed and fabricated on a 200 mm CMOS BEOL Line. A top Al interconnect layer was used as an electrode with a comb/serpent structure, and graphene oxide (GO) was used as sensing material. XRD analysis was done which shows that GO sensing material has a strong and sharp (002) peak at about 10.278°, whereas graphite has (...

متن کامل

Design of High Sensitivity and Linearity Microelectromechanical Systems Capacitive Tire Pressure Sensor using Stepped Membrane

This paper is focused on a novel design of stepped diaphragm for MEMS capacitive pressure sensor used in tire pressure monitoring system. The structure of sensor diaphragm plays a key role for determining the sensitivity of the sensor and the non-linearity of the output.First the structures of two capacitive pressure sensors with clamped square flatdiaphragms, with different thicknesses are inv...

متن کامل

Modeling of capacitance and sensitivity of a MEMS pressure sensor

In this paper modeling of capacitance and sensitivity for MEMS capacitive pressure sensor is presented. In capacitive sensor the sensitivity is proportional to deflection and capacitance changes versus pressure. Therefore first the diaphragm displacement, capacitance and sensitivity of sensor with square diaphragm have been modeled and then simulated using finite element method (FEM).  It can b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Micromachines

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016